New (?) Measurements for IT Projects: Leveraging Industry Best Practice

Herb Krasner

CISQ Advisory Board Member Professor of Software Engineering, UT (Retired)

Texas IT Champion

<u>hkrasner@utexas.edu</u>

June 19, 2018

Objectives

- My agenda
 - Assess the current situation and opportunity context
 - Discuss the emergence of HB 3275 and related developments – what they really mean
 - Motivation: What gets measured, gets improved
 - Discuss required and recommended measurements of MIRP performance indicators
 - Introduce the key concepts of quality and cost of quality; and why they are so important to focus on now
 - Discuss how we can:
 - Determine the best approaches to pursue
 - Leverage IT best practices & stds for significant results

Our Situation

- IT projects have a reputation for being difficult to forecast & control.
- TX state government spending on IT ~ \$2.8B in 2017¹⁶ (CA=\$7B)
- Texas state agency IT projects (from DIR & QAT reports)
 - 2/3 of all major IT projects were off track; worse in 2017
 - 1/2 of all IT projects had high cybersecurity/legacy failure risks
 - Lack of early visibility into serious problems (e.g. Tx HAC)
- HB 3275: Agency major IT projects will now measure & report on performance indicators for: cost, schedule, scope & quality
 - These measurements can be used to drive down costs and better control risks; & improve project performances over time.
 - Value proposition: The later you find and fix anomalies/problems/ deficiencies/defects the more costly it will be
- Our Challenge: come to consensus, and take action for optimum effect; rather than just do the minimum

What HB 3275 Requires of You

Herb's Initial "Watch List" *

AGENCY	PROJECT	COMMENT
Commission on State Emergency Communications	State-level Digital 9-1-1 Network	Early warning indicators
Department of Family and Protective Services	Information Management Protecting Adults and Children in Texas (IMPACT) System Modernization	Early warning indicators
Health and Human Services Commission	Enterprise Data Warehouse (EDW) and Enterprise Data Governance	Early warning indicators
Health and Human Services Commission	Women Infants and Children (WIC), WIC Information Network (WIN)	Way late, over cost
Office of Attorney General	Texas Child Support Enforcement System (TXCSES 2.0) Initiative (T2)	~100% over cost, late
Teacher Retirement System	TRS Enterprise Application Modernization	Way late

Feel free to add to this list or disagree with my assessment

DIR Preview of Coming Measurements Req'd (reportedly in summer time)

Project Performance Indicators

Cost

 Earned Value approach using the Cost Performance Index (CPI)

Schedule

 Earned Value approach using the Schedule Performance Index (SPI)

Scope

 Measuring requirements volatility and number/impact of change requests

Quality

 Different metrics reported throughout project lifecycle according to Quality Management Plan

http://dir.texas.gov/View-Resources/Pages/Content.aspx?id=16

Cost Measurement

- Required
 - CPI = EarnedValue/ActualCost (<=1 is good)</p>
- Other recommended
 - ECAC = BAC/CPI
 - TCPI (to-complete CPI)
 - Cost variance = EV AC
 - Contingency reserve depletion rate

Earned value analyses needs to be against quality work products delivered rather than \$\$ spent.

CPI – Cost Performance Index ECAC – Estimated Cost at Completion BAC – Budget at Completion

Schedule Measurement

- Required
 - SPI = EarnedValue/PlannedValue (<= 1 is good)</p>
- Other recommended metrics
 - Schedule Variance (SV) = EV PV
 - Estimated Time at Completion (ETAC)
 - Contingency reserve depletion rate
 - Schedule risk

Earned value analyses needs to be against quality work products delivered rather than time consumed.

Scope Measurement

- Required
 - Requirements volatility
 - Requirements changed between baselines
 - Scope change frequency and impact
 - Frequency/impact of change orders and change requests
- Additional recommended
 - Balanced scorecard (multi-faceted)
 - System size
 - Effort growth rate
 - WBS size
 - Scope anomalies, problems and deficiencies
 - Requirements quality (e.g. SMART) & satisfaction

Quality Measurement

- You should have some measurable quality goals
 - Put into your quality management plan
 - Up to you to define what quality means and establish measureable objectives
 - Needed for: planning, specifying, developing and evaluating the system
 - Using the quality register template to specify goals/measures
 - see my recommended sample (coming up)
- The most difficult to define, measure and manage;
 but the most rewarding¹ if done properly
- What standards & best practices should we rely on?

The Importance of IT SW Quality

- Software is blamed for more major business problems than any other man-made product.
- Poor software quality has become one of the most expensive topics in human history:
 - > \$150 B per year in U.S.
 - > \$500 B per year world wide
 - 15-30% of total corporate revenues in low maturity shops
 - Finding & fixing deficiencies is the largest expense item on most IT projects
- For U.S. software:
 - Average quality is ~ 5 defects per function point, with
 85% of these being removed prior to delivery.
 - Best results have defects below 2 per function point combined with 99.6% removal efficiency.
 - Projects often fail at levels of 7 +.

What is IT Software Quality (general)?

Hard to define

Conformance to requirements

- The requirements are clearly stated and the product must conform to it
- Any deviation from the requirements is regarded as a defect
- A good quality product contains fewer defects

Fitness for use/purpose

- Fit to user expectations: meet user's needs
- A good quality product provides better user satisfaction

Underlying aspects: • Meets standards

- In many industries and organizations certain external and internal standards must be complied with
- A good quality product conforms to required standards of quality/ process

- •Structural quality
 - •E.g. complexity
- •Aesthetic quality
 - •E.g. appearance

ISO 25000: Standard IT Quality Metrics

Evolved from ISO 9126

- CISQ: has defined automatable measures of software quality attributes that can be measured in source code -> assured, trusted systems
 - conforms to ISO 25010 quality characteristic definitions
 - supplements ISO 25023 with source code level measures
- Deployment: OMG -> ISO -> Policies -> certification -> regulation -> tools -> procurement

Herb's version

Sample MIRP Quality Register

Quality Objective	Quality Standard	Priority	Weight	Tracking Tool or Measure
Functional Suitability	ISO 25023			Functional: completeness, correctness, appropriateness
Usability	ISO 25023			User: effectiveness, efficiency, satisfaction
Security	ISO 25023, CISQ			CISQ Security Metric, Security defects, cybersecurity vulnerability index
Reliability	ISO 25023, CISQ			CISQ Reliability Metric, Reliability defects, MTTF, availability
Performance Efficiency	ISO 25023, CISQ			CISQ Performance Efficiency Metric, Performance defects, Other performance metrics: response time, capacity, throughout, etc.
Maintainability	ISO 25023, CISQ			CISQ Maintainability Metric, maintainability defects
Compatibility	ISO 25023			Plug-and-play ability, etc.
Portability	ISO 25023			Adaptability, etc.
Data quality	ISO 25024			Data: accuracy, completeness, consistency, credibility, currentness, etc.
Quality in Use	ISO 25022			Agency/organization: effectiveness, efficiency, enablement, system value, riskiness; service quality (as needed. E.g. SLAs)
Development process quality	CMMI-dev			CMMI process maturity, Defect Removal Effectiveness (DRE), Sigma level

Best Vs. the Worst IT Performers

- IBM sponsored benchmarking survey of 363 European software organizations
- Covered 15 countries (Germany and UK represent over half the sample) and over a dozen industries (banking, insurance, manufacturing, IT and Distribution most heavily represented)

well defined, adaptable development process, with a proactive quality mgt. focus

Performance Factor	Top 10%	Bottom 10%
Productivity (fcn pts./mo.)	25	5
Delivered quality (% defects removed)	>95%	<50%
Cost/Schedule Performance	<= 10%	>40% over
Post delivery maintenance costs (within 1st yr.)	<1% (of total dev. effort)	>10%

Strategic IT Quality Metric to Consider

- Cost of IT Software Quality (COSQ)^{1,6}
 - an accounting technique to enable our understanding of the economic tradeoffs involved in delivering good quality software (as well as, the cost of poor quality software).
 - A major portion of the Total Cost of Ownership of an IT system
 - Adapted to the unique nature of software in the 1990s⁶.
 - Many organizations have used this approach to measurably and significantly improve
 - Case studies and client success stories are available ¹⁴
 - US industry wide study of CPSQ is coming soon (Sept.)
 - Would love to do a similar study of Texas someday

Conclusions/Takeaways

- Now you know what HB 3275 intends. What will you recommend to your organization?
- Performance metrics -> rework/COSQ -> total costs/time -> successes
- Focus on quality
 - IT software quality is difficult to define, measure & manage; but necessary & rewarding for each project
 - IT quality standards and tools are there to help
 - Would you invest in them?
 - What's your value proposition?
- This group can be the state "leaders"

References

- 1. Krasner, H., Software Quality: Dispelling the Myth that Quality Software Costs More and Takes Longer, keynote speech, 4th ICSQ, 1994
- 2. Here is the new statue that the law created http://www.statutes.legis.state.tx.us/Docs/GV/htm/GV.2054.htm#2054.159
- 3. Krasner, H. Blog posts on IT measurement http://it-cisq.org/it-quality-measurement-implications-for-large-it-projects-in-texas
 - Scope measurement: http://it-cisq.org/scope-measurement-on-large-it-projects-in-texas-a-position-paper/
 - Quality measurement: http://it-cisq.org/it-quality-measurement-implications-for-large-it-projects-in-texas/
 - Project performance measurement: http://it-cisq.org/measuring-it-project-performances-in-texas-house-bill-hb-3275-implications/
- 4. Mitre Corp. (2012). Common Weakness Enumeration. mitre.cwe.org
- 5. CISQ Specifications for Automated Software Quality Measures. Needham, MA Object Management Group, Consortium for IT Software Quality. www.it-cisq.org
- 6. Krasner, H. and D. Houston, *Using the Cost of Quality for Software*, in CrossTalk, The War on Bugs, Vol. 11, No. 11, November, 1998, pp 6-11, see online at www.stsc.hill.af.mil/crosstalk/crostalk.html
- 7. Jones, C. & Bonsignour, O., *Economics of Software Quality*, Addison-Wesley, 2012.
- 8. http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
- 9. The Forrester Wave™: Vulnerability Risk Management, Q1 2018. Tools And Technology: The Security Architecture And Operations Playbook by Josh Zelonis March 14, 2018
- 10. The NIST Cybersecurity Framework explains "what to do" to develop, acquire, modernize and secure IT-intensive systems, and leaves "how to do it" open to an organization to customize with practices.
- 11. The Forrester Wave™: Static Application Security Testing, Q4, 2017, The 10 Vendors That Matter Most And How They Stack Up, Amy DeMartine, December 12, 2017
- 12. Magic Quadrant for Application Security Testing, Published: 19 March 2018 ID: G00327353, Analyst(s): Ayal Tirosh, Dionisio Zumerle, Mark Horvath
- 13. 2018 Top Cybersecurity Threats, NopSec, www.nopsec.com
- 14. Bombardier Transportation COSQ case study https://www.etsmtl.ca/Professeurs/claporte/documents/publications/Project-at-bombardier-transportation SQP June-2012.pdf
- 15. Common Vulnerability Scoring System 3.0 https://www.first.org/cvss/
- 16. http://www.govtech.com/biz/Which-States-Spend-the-Largest-Portions-of-their-Total-Budgets-on-Tech.html